
Natural convection flows in
complex cavities by BEM
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Abstract A numerical method for the solution of the Navier-Stokes equations is developed using
an integral representation of the conservation equations. The velocity-vorticity formulation is
employed, where the kinematics is given with the Poisson equation for a velocity vector, while the
kinetics is represented with the vorticity transport equation. The corresponding boundary-domain
integral equations are presented along with discussions of the kinetics and kinematics of the fluid
flow problem. The boundary-domain integral formulation is developed and tested for natural
convection flows in closed cavities with complex geometries.

1. Introduction
The research field of natural convection in closed cavities has gained an
increased attention due to many practical situations, where natural convection
phenomena plays a dominant role. In thermal engineering, natural convection
is one of the most important heat transfer mechanisms, especially in closed
cavities, as for example in building elements, seals of cooling appliances and
thermal storage tanks.

The main driving force of fluid motion in the case of natural convection is
the density change due to temperature increase or decrease. If we deal with
cavity with a horizontal temperature difference, such induced fluid motion can
strongly affect the overall heat transfer across the cavity. If the working fluid is
known, the only way to influence heat transfer is to change the geometry the
cavity. This leads to cavities with complex geometries, where usually no
known correlations for heat transfer coefficient exists. Numerical investigation
of such heat and fluid flow phenomena is therefore of great importance,
as it gives an accurate insight into heat and flow conditions inside the cavity.
Several researchers already published numerical results on natural convection
in complex geometries, predominantly by the use of finite difference method
(Chang and Tsay, 2001; Ciofalo and Karayiannis, 1991).

In the present work, the main attention will be on the development of an
accurate boundary element algorithm for computation of natural convection
flows in complex geometries. Among different approximation methods
developed the boundary element method has proved to be very accurate for the
computation of heat transfer in solids as well as in fluids at moderate Ra
number values. Since in real life problems, high value Ra flows frequently
occur, heat convection starts to play a predominant role. In such cases, the
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classical boundary element formulations are not suitable for computations
anymore. However, in the last few years, a lot of work has been done on the
further development of BEM algorithms for natural convection flows, among
others (Hribersek and Kuhn, 2000; Skerget et al., 1989, 1999).

Several numerical issues have to be solved in order to construct an accurate
and conservative numerical method. With higher values of Ra number,
accurate prediction of convection phenomena becomes extremely important,
as well as capturing high gradients in the viscous sublayer. In general,
conservation of mass and energy has to be preserved in order to obtain
physically relevant solutions.

This paper presents a detailed derivation of a conservative boundary
element algorithm in the form of boundary-domain integral method. Since the
solution to nonisothermal Navier-Stokes equations is done through the
velocity-vorticity approach, a special attention is devoted to conservation of
mass and vorticity in the computational domain, as this is the key issue in
obtaining accurate solutions in complex geometry flows. Additionally, the
derivation of integral form of flow kinematics equation starting from the
velocity-vector flow kinematics equation, developed by Skerget et al. (1999), is
described, leading to integral form of flow kinematics formally equal to vector
potential flow kinematics (Hribersek and Skerget, 1996; Skerget et al., 1989;
Wu, 1982; Wu and Thompson, 1973).

2. Navier-Stokes equations
The analytical description of the motion of a continuous medium is based on
the conservation of mass, momentum and energy, and the associated equations
of state and constitutive relations. With the assumptions of incompressibility
within Boussinesq approximation, the following partial differential equations
set can be stated in an indicial notation form for a right-handed Cartesian
coordinate system

›vj
›xj

¼ 0; ð1Þ

Dvi
Dt

¼ 2
1

r

›P

›xi
þ n

›2vi
›xj›xj

þ FBgi; ð2Þ

DT

Dt
¼ a

›2T

›xj›xj
; ð3Þ

where the vector field functions vi, gi, and xi are, respectively, velocity, gravity
and position. The scalar quantities P ¼ p2 rgjrj and T are modified pressure
and temperature, while D/Dt represents the Stokes derivative. The material
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properties such as mass density r, specific isobaric heat cp, kinematic
viscosity, n and heat conductivity, l are assumed to be constant parameters.
In the heat transport equation, a ¼ l=ðrcpÞ denotes the thermal diffusivity.

In the case of Boussinesq approximation, the normalised density--
temperature variation function, FB can be written as follows

FB ¼ 2bTðT 2 ToÞ; ð4Þ

where bT is a thermal volume expansion coefficient and To is the reference
temperature.

The Navier-Stokes equation set for nonisothermal fluid flow consists of
equations (1)-(3), which present the basis for the determination of velocity,
pressure and temperature field functions, provided that adequate initial and
boundary conditions are prescribed.

3. Kinematics and kinetics of incompressible flow
The dynamics of a viscous incompressible fluid is partitioned into its kinematic
and kinetic aspect through the use of derived vector vorticity field function
viðrj; tÞ obtained as a curl of the compatibility velocity field viðrj; tÞ

vi ¼ eijk
›vk
›xj

;
›vi

›xj
¼ 0; ð5Þ

which is solenoidal vector by the definition, and eijk is the permutation unit
tensor.

By applying the curl operator to the vorticity definition

~7 £ ~v ¼ ~7 £ ð~7 £ ~vÞ ¼ ~7ð~7 · ~vÞ2 72~v ð6Þ

and by using the continuity equation for the incompressible flows, ~7 · ~v ¼ 0;
the following vector elliptic Poisson equation for velocity vector is obtained

72~vþ ~7 £ ~v ¼ 0: ð7Þ

Equation (7) represents the kinematics of an incompressible fluid motion,
expressing the compatibility and restriction conditions between velocity and
vorticity field functions. With either equations (1) and (5), or (7), the kinematics
of the fluid motion problem is governed by a linear set of elliptic differential
equations. Since equation (7) is elliptic, the correct boundary condition to
prescribe is either Dirichlet’s or Neuman’s or a linear combination of the two,
over the entire boundary G.

The kinetic aspect is governed by the parabolic diffusion-convection
vorticity transport equation obtained by applying the curl operator to the
momentum equation (2),
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Dvi

Dt
¼

›vjvi
›xj

þ n
›2vi

›xj›xj
þ eijkgk

›FB

›xj
: ð8Þ

For the case of the two-dimensional flow, the vorticity vector has just
one component, perpendicular to the plane of the flow. Thus, the
twisting-stretching term is identical to zero ð ~v · ~7Þ~v ¼ 0; simplifying
equation (8) to a scalar transport equation for vorticity

Dv

Dt
¼ n

›2v

›xj›xj
þ eijgj

›FB

›xi
; ð9Þ

eij being the permutation unit symbol. The vorticity transport equation is
nonlinear due to the product of velocity and vorticity, which are kinematically
dependent variables. Due to the buoyancy source term, the vorticity transport
equation is also coupled to the energy equation, making the nonlinearity of the
equations set even more severe.

4. Integral representations
The unique advantage of the boundary element method originates from the
application of Green fundamental solutions as particular weighting functions.
Since they only consider the linear transport phenomenon, an appropriate
selection of a linear differential operator L½·� is of main importance in
establishing a stable and accurate singular integral representations
corresponding to original differential conservation equations.

All different conservation models can be written in the following general
form

L½u� þ b ¼ 0; ð10Þ

where the operator L½·� can be either elliptic or parabolic, uðrj; tÞ is an
arbitrary field function, and the nonhomogeneous term bðrj; tÞ is applied for
nonlinear transport effects or pseudo body forces.

4.1 Integral representations for flow kinematics
The velocity equation (7) can be recognized as a nonhomogeneous elliptic
vector Poisson equation, thus employing the linear elliptic Laplace differential
operator as follows

L½·� ¼
›2ð·Þ

›xj›xj
ð11Þ

the following can be stated:

L½vi� þ bi ¼
›2vi
›xj›xj

þ bi ¼ 0 ð12Þ
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The singular boundary integral representation for the velocity vector can be
formulated by using the Green theorems for scalar functions, or weighting
residuals technique, rendering the following vector integral formulation

cðjÞ~vðjÞ þ

Z
G

~v
›u*

›n
dG ¼

Z
G

›~v

›n
u* dGþ

Z
V

~7 £ ~v u* dV; ð13Þ

with u* the elliptic Laplace fundamental solution. Using vector identities on the
domain integral, the following integral representation can be written as

cðjÞ~vðjÞ þ

Z
G

~v
›u*

›n
dG ¼

Z
G

›~v

›n
u* dG2

Z
G

~v £ ~n u* dGþ

Z
V

~v

£ ~7u* dV; ð14Þ

or in tensor notation form

cðjÞviðjÞ þ

Z
G

vi
›u*

›n
dG ¼

Z
G

›vi
›n

u* dG2 eijk

Z
G

vjnku* dG

þ eijk

Z
V

vj

›u*

›xk
dV: ð15Þ

For plane flow situation, equation (15) reduces to the following two scalar
equations, as follows

cðjÞviðjÞ þ

Z
G

vi
›u*

›n
dG ¼

Z
G

›vi
›n

u* dGþ eij

Z
G

vnju* dG

2 eij

Z
V

v
›u*

›xj
dV: ð16Þ

One of the most important issues in numerical modeling of incompressible flow
phenomena is to obtain divergence free final solution, as well as for mass
conservation, equation (1), as for vorticity conservation, equation (5). In case of
equations (7) or (14), it can be easily shown (Wu and Thompson, 1973) that it
admits solutions where neither divergences are zero. Thus, equation (14) does
not, in general, represent the kinematics of the incompressible fluid flow.
However, in cases of flows in closed cavities, induced by natural convection
phenomena, where the no-slip boundary condition is applied on the whole
boundary, equation (14) may be used in the place of equations (1) and (5).

As we do not want the BEM numerical formulation of Navier-Stokes
equations to be limited to some selected cases only, we will derive the integral
representation of flow kinematics which will ensure divergence free solutions.
Therefore, we will use additional compatibility and restriction conditions in
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derivation of integral representations for the general fluid flow situation, where
boundary G may be in the interior of the fluid.

Let us, for the sake of simplicity of derivation, focus on plane flow
kinematics, given by equation (16). By using the relations for the normal
velocity component derivatives

›vx

›n
¼

›vx

›x
nx þ

›vx

›y
ny

›vy

›n
¼

›vy

›x
nx þ

›vy

›y
ny;

ð17Þ

vorticity definition

v ¼
›vy

›x
2

›vx

›y
; ð18Þ

tangent and normal unit vectors

~n ¼ ðnx; nyÞ

~t ¼ ðtx; tyÞ ¼ ð2ny; nxÞ;
ð19Þ

and by applying continuity equation (1), one can write the following relations

›vx

›x
nx þ

›vx

›y
ny þ

›vy

›x
ny 2

›vx

›y
ny ¼ 2

›vy

›t

›vy

›x
nx þ

›vy

›y
ny 2

›vy

›x
nx þ

›vx

›y
nx ¼

›vx

›t
;

ð20Þ

thus the boundary integrals on the right hand side of equation (16) can be
simplified, resulting in

cðjÞviðjÞ þ

Z
G

vi
›u*

›n
dG ¼ 2

Z
G

›vj
›t

u* dG2 eij

Z
V

v
›u*

›xj
dV: ð21Þ

Then equation (21) can be further reformulated as

cðjÞviðjÞ þ

Z
G

vi
›u*

›n
dG ¼

Z
G

vj
›u*

›t
dG2 eij

Z
G

›vju*

›t
dG

2 eij

Z
V

v
›u*

›xj
dV; ð22Þ

and by applying the Gauss theorem, the second boundary integral on the right
hand side of the equation vanishes, resulting in the final integral representation
for the two dimensional plane kinematics
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cðjÞviðjÞ þ

Z
G

vi
›u*

›n
dG ¼

Z
G

vj
›u*

›t
dG2 eij

Z
V

v
›u*

›xj
dV; ð23Þ

which is identical to the integral representation using the vector potential
formulation for the flow kinematics (Hribersek and Skerget, 1996).

The general boundary integral representation can be easily stated as

cðjÞ~vðjÞ þ

Z
G

ð~7u* · ~nÞ~v dG ¼

Z
G

ð~7u* £ ~nÞ £ ~v dGþ

Z
V

ð ~v £ ~7u* Þ dV; ð24Þ

or in the compact symbolic notation form for the cyclic combination of indices
ijkij ¼ 12312;

cðjÞviðjÞ þ

Z
G

vi
›u*

›n
dG ¼

Z
G

vk
›u*

›xk
ni 2

›u*

›xi
nk

� �
dG

2

Z
G

vj
›u*

›xi
nj 2

›u*

›xj
ni

� �
dG

þ

Z
V

vj
›u*

›xk
dV2

Z
V

vk
›u*

›xj
dV: ð25Þ

The boundary integral representation (24) is completely equivalent to
equations (1) and (5), or equation (7), together with velocity boundary
conditions expressing the kinematics of a general incompressible fluid flow in
the integral form.

When the unknowns are the boundary vorticity values or the tangent
velocity component values, one has to use the tangential component of the
vector (equation (24))

cðjÞ~nðjÞ £ ~vðjÞ þ ~nðjÞ £

Z
G

ð~7u* · ~nÞ~v dG

¼ ~nðjÞ £

Z
G

ð~7u* £ ~nÞ £ ~v dGþ ~nðjÞ £

Z
V

ð ~v £ ~7u* Þ dV ð26Þ

in order to obtain the appropriate nonsingular implicit system of equations.
Then equation (26) enables boundary vorticity values to be expressed in
integral form within the domain integral, excluding the need to use an
approximate formulae for determining boundary vorticity values, which would
bring an additional error in the computational scheme.

When the normal velocity components to the boundary are unknown, the
normal form has to be employed:
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cðjÞ~nðjÞ · ~vðjÞ þ ~nðjÞ ·

Z
G

ð~7u* · ~nÞ~v dG

¼ ~nðjÞ ·

Z
G

ð~7u* £ ~nÞ £ ~v dGþ ~nðjÞ

Z
V

ð ~v £ ~7u* Þ dV ð27Þ

Equations (26) and (27) basically represent the application of the boundary
velocity conditions given for normal and tangential velocity components to the
boundary.

For the closed cavity problem, where the boundary G represents the solid
wall on which condition ~v ¼ 0 is valid, then equation (24) reduces to

cðjÞ~vðjÞ ¼

Z
V

ð ~v £ ~7u* Þ dV: ð28Þ

For such flow situations, the boundary integrals vanish, and the velocity field
in the fluid domain is simply given by the domain integral of the vorticity field.

4.2 Integral representations for flow kinetics
Considering kinetics in an integral representation, one has to consider the
parabolic diffusion-convection character of the vorticity transport equation (8).
Since only the linear parabolic diffusion differential operator is employed, i.e.

L½·� ¼ n
›2ð·Þ

›xj›xj
2

›ð·Þ

›t
; ð29Þ

the vorticity equation can be formulated as a nonhomogeneous parabolic
diffusion equation as follows

L½v� þ b ¼ n
›2v

›xj›xj
2

›v

›t
þ b ¼ 0 ð30Þ

with the following corresponding integral representation written in a time
increment form for a time step Dt ¼ tF 2 tF21 :

cðjÞvðj; tFÞ þ n

Z
G

Z tF

tF21

v
›u*

›n
dt dG

¼ n

Z
G

Z tF

tF21

›v

›n
u* dt dGþ

Z
V

Z tF

tF21

bu* dt dVþ

Z
V

vF21u*F21 dV; ð31Þ

where u* is the parabolic diffusion fundamental solution. The domain integral
of the nonhomogeneous nonlinear contribution b, represented as
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b ¼ 2
›vjv

›xj
þ eijgj

›FB

›xi
; ð32Þ

includes the convection and the buoyancy force term, thus the final integral
statement reads as

cðjÞvðj; tFÞ þ n

Z
G

Z tF

tF21

v
›u*

›n
dt dG

¼ n

Z
G

Z tF

tF21

›v

›n
u* dt dG2

Z
G

Z tF

tF21

vvnu* dt dG

þ

Z
V

Z tF

tF21

vvj
›u*

›xj
dt dVþ eij

Z
G

Z tF

tF21

nigjFBu* dt dG

2 eij

Z
V

Z tF

tF21

gjFB
›u*

›xi
dt dVþ

Z
V

vF21u*F21 dV: ð33Þ

Equation (33) represents the vorticity transport in the integral form. Vorticity
diffusion is described by the first two boundary integrals, the third boundary
integral describes the convective flow on the boundary and the last boundary
integral is due to vorticity generation on the boundary due to buoyancy forces.
The first two domain integrals give the influence of forced and natural
convection, while the last domain integral represents the initial vorticity
distribution effect on the development of the vorticity field in the next time
interval.

By applying a similar procedure to the heat transport equation (3), one
derives the following integral statement

cðjÞTðj; tFÞ þ a

Z
G

Z tF

tF21

T
›u*

›n
dt dG

¼ a

Z
G

Z tF

tF21

›T

›n
u* dt dG2

Z
G

Z tF

tF21

Tvnu* dt dG

þ

Z
V

Z tF

tF21

Tvj
›u*

›xj
dt dVþ

Z
V

TF21u*F21 dV; ð34Þ

where u* is the parabolic diffusion fundamental solution.

5. Computational algorithm
If we want to obtain values of field functions in our computational domain, one
has to first transform the derived integral equations into its discrete algebraic
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forms, as presented by Hribersek and Skerget (1996), Skerget et al. (1999) and
Wrobel (2002) among others. The key to this is division of computational
external boundary into boundary elements and interior domain into domain
cells. In the present work, quadratic interpolation functions were used in the
case of boundary elements and internal cells.

Before we proceed to the description of computational procedure, let us first
make a few remarks. The kinematics and kinetics of the fluid flow motion can
be seen as two interlaced problems in a computational procedure. For general
time dependent flows, using known information about the motion at an instant
time level, new vorticity values for a subsequent time level are determined by
solving the parabolic kinetic vorticity transport equation (8). With this new
vorticity values, corresponding velocity values for subsequent time level are
computed by solving the elliptic kinematic relation (7). These two related steps
constitute a computational loop which advances the solution from initial level
to a subsequent time level.

Additionally, due to the presence of buoyancy forces, the vorticity transport
is also dependent on temperature distribution inside the fluid domain, which
means that all the three equations are strongly coupled into a nonlinear system,
which has to be solved iteratively.

The solution algorithm for the case of natural convection in closed cavities
can therefore be written as:

(1) Choose initial vorticity (v0) and temperature (T0) distributions, set F ¼ 0;
define the number of time steps NT.

(2) Time loop: F ¼ F þ 1

(3) Flow kinematics:

(3.1.) Solve equation (26) for boundary vorticities.

(3.2.) Compute domain velocities from equation (28) with cðjÞ ¼ 1
explicitly.

(4) Energy transport:

Solve system (34) for unknown T and ›T/›n.

(5) Vorticity transport:

(5.1.) Solve system (33) for unknown v in the domain and ›v/›n on the
boundary.

(5.2.) Use underrelaxation (Q) for computing new domain vorticity values
ði þ 1Þ for step 3.:

iþ1{v} ¼ Qiþ1{v}þ ð12QÞ i{v}

(5.3.) Check convergence for predefined error 1 (usually 0.0001,
Nc ¼ number of nodes):

Natural
convection flows

729



C ¼

PNc

j¼1

ð iþ1v j 2
i v jÞ

2

PNc

j¼1

ð iþ1v jÞ
2

If C , 1 go to 6.

If C $ 1 go to 3.

(6) If F , NT set {v}F ¼ {v}F21; {T}F ¼ T}F21 and go to 2.

If F $ NT end.

6. Test problems
The presence of nonregular boundaries can significantly affect the thermal and
flow conditions inside the cavity as compared with a square cavity. Two test
cases were therefore selected to test the abilities of the developed numerical
algorithm. In both test cases, there is a horizontal gradient of temperature, that
causes onset of natural convection. Regarding the geometry, both geometry
contractions and expansions are encountered. The selected test cases present
an extension of the classical natural convection benchmark test of differentially
heated square enclosure, performed by various authors, among others (Davis,
1983; Škerget et al., 1989, 1999). In all cases, the Boussinesq approximation is
employed to account for the thermal buoyancy effects, and the working fluid
was air with Pr ¼ 0:71:

6.1 Natural convection in a heated backward facing step problem
The natural convection in a heated backward facing step can be seen as an
extension of the classical natural convection in a closed cavity test. Here, this
classical test case can be observed in the lower part of the cavity. The test
configuration is shown in Figure 1. The backward step wall is heated and kept
at a constant temperature T1, while the right wall is cooled and kept at a lower
temperature T2, all other walls are adiabatic.

In comparison with square cavity test, the upper wall of the square cavity is
replaced here by a large horizontal cavity, which significantly affects the
temperature and flow field in the upper part of the cavity.

Computational mesh, shown in Figure 2, consisted of 96 quadratic boundary
elements and 432 internal cells in a 24 £ 24 mesh pattern with element ratio
4.The computational mesh was therefore denser near the solid walls, where
large gradients in temperature and velocity profiles were expected.

The computations were performed for Ra number values in the range
102 2 105: Here, Rayleigh number value was defined as (h stands for the
height of the heated backward step wall, i.e. 0.5),
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Ra ¼
gbðT1 2 T2Þh

3

na
: ð35Þ

From the results in Figures 3 and 4 we see the effect of the expansion of the
cavity in the upper half. Whereas isotherms are quite close to the ones in a
square cavity, in the upper part a strong recirculation due to abrupt increase
in cavity width is formed. This is the cause of dominance of convective heat
transfer in the upper part of the cavity, especially evident in the case of
Ra ¼ 105 (Figure 4).

In order to compare our results with the results of computations of Chang
and Tsay (2001), where 80 £ 80 finite difference mesh was used, average Nu
number values were computed as

Nu ¼ 2

Z 1

0

›T

›n

� �
x¼1

dy: ð36Þ

Figure 1.
Presentation of the

heated backward facing
step problem

Figure 2.
Computational mesh for
L domain: 24 £ 24 cells

with ratio 4
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Figure 5 shows the obtained results together with the results of Chang and
Tsay (2001) and CFX (2001). Also, computations with CFX-4 CFD software
were performed on 80£80 mesh. It is also interesting to see the difference in Nu
numbers when compared with classical square cavity test. This comparison is
shown in Figure 6 with bem nc results for square cavity obtained by boundary
domain integral method from Hribersek and Skerget (1996). Due to the
expansion in the cavity the local velocities near the point (0.5,0.5) increase as
compared with a square cavity, increasing also local heat transfer rate and
resulting in a higher average Nu number value.

Figure 4.
Contour plots of
streamlines,
temperatures and
vorticities for Ra ¼ 105

Figure 5.
Average Nusselt number
for different values of Ra
number (bem 24 –
current computations,
bem nc – computations
in Hribersek and Skerget
(1996)

Figure 3.
Contour plots of
streamlines,
temperatures and
vorticities for Ra ¼ 103
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6.2 Natural convection in a H shaped cavity
The second test case selected can also be seen as a derivation of a standard
square cavity test, but in this case there are additional solid wall partitions, that
protrude centrally from the top and bottom walls into the cavity. The test
configuration is presented in Figure 6. The partition length is one quarter of
the cavity height, h. The Rayleigh number is defined as in equation (35).
Computational mesh used consisted of 100 boundary elements and 380 internal
cells (Figure 7).

As the effect of partitions on heat transfer is more pronounced at lower Ra
number values (Ciofalo and Karayiannis, 1991), computations were performed
for Ra number values between 103 and 3:5 £ 105: From the computational
results, shown in Figures 8-10, partitions reduce the fluid flow along the
isothermal walls and thus reduce also the heat transfer rate at the walls. This is
also evident from the comparison of average Nu number values of present
calculation and calculation for square cavity problem with the presented BEM
algorithm, shown in Table I. Comparison with results of finite volume method
of CFX-4, where computations were performed on 64 £ 64 mesh, shows very

Figure 6.
Presentation of the H

shaped cavity problem

Figure 7.
Computational mesh for
H shaped cavity: 20 £ 20

cells
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good agreement. Note that contours of streamlines are post processing results,
calculated outside the BEM algorithm.

7. Conclusions
Boundary-domain integral approach to the solution of natural convection
problems is considered. The accuracy of the presented numerical algorithm is
shown on numerical modelling of several complex geometries of closed cavity
problems. The results for relatively coarse meshes are accurate as shown by
the comparison with available numerical data of other authors.

Rayleigh number
Nusselt number 103 104 3.5£ 105

H cavity (present) 0.753 1.231 6.025
H cavity (CFX, 2001) 0.751 1.267 6.065
Square cavity (present) 1.118 2.243 6.582

Table I.
Comparison of average
Nu numbers for H
shaped cavity and
square cavity

Figure 10.
Contour plots of
streamlines,
temperatures and
vorticities for
Ra ¼ 3.5 £ 105

Figure 9.
Contour plots of
streamlines,
temperatures and
vorticities for Ra ¼ 104

Figure 8.
Contour plots of
streamlines,
temperatures and
vorticities for Ra ¼ 103
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The solution algorithm is based on the velocity-vorticity formulation of the
Navier-Stokes equations. The kinematics is given by the Poisson velocity
equation, while the kinetics is considered in a form of vorticity transport
equation. It is shown that the integral representation for the velocity equation is
identical to the one based on Poisson vector potential equation, when additional
restriction conditions are applied. This formulation ensures the solenoidality of
the velocity and vorticity fields for general flow problems.

The unique ability of the integral representation approach is based on the use
of Green functions, thus the linear part of the transport phenomena is described
by the boundary integrals only, while the nonlinear effects are modelled by the
internal domain discretization. The critical part of the kinematics, the
computation of boundary vorticity values, is done in a global integral manner,
establishing the method superior to the other domain type numerical models.
It should be mentioned that the introduction of the segmentation technique
(Hribersek and Skerget, 1996), for the flow kinematics and the subdomain
technique (Skerget et al., 1999) for the kinetics presents another very promising
direction of the development of the proposed method, especially when
computation of large engineering problems should be considered.
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